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ABSTRACT 

We propose an e l emen ta ry  a lgebraic  approach to the  pa tch ing  of Galois 

groups. We prove t h a t  every finite group is regular ly  real izable  over the  

field of r a t iona l  funct ions in one var iable  over a comple te  discrete  valued 

field. 

I n t r o d u c t i o n  

Harbater introduced "patching" in [H1] to prove that  each finite group occurs as 

a Galois group over the field of rational functions K(z), where K is the field of 

fractions of a complete local ring. In particular, this holds if K is any discrete 

complete valued field. Harbater's work is phrased in the language of formal 

geometry (i.e., formal schemes). Liu [Li] and Serre [Se, Theorem 8.4.6] translated 

it into the language of rigid analytic geometry. Both approaches rely on general 

GAGA theorems relating formal (resp., rigid analytic) geometry to algebraic 

geometry. 

* Partially supported by NSF grant DMS 9306479. 
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In the present paper we give an elementary proof of this theorem that replaces 

these general GAGA principles by a simple ring-theoretic "GAGA" correspon- 

dence based on the so-called "Cartan's Lemma". This approach also yields a 

short proof of a recent result of Harbater [H5] and Pop [Po]: If K is a count- 

able algebraically closed field, then the absolute Galois group of K(z) is the free 

profinite group F~ of countable rank. This implies that F~ is the absolute Galois 

group of every function field L of one variable over K,  since such L is finite over 

K(z) (Corollary 4.7). 

Cartan's Lemma is basic for the development of rigid analytic geometry. 

Matrix factorizations as in Cartan's Lemma have also been used by Harbater 

([H2] and [H3]) in his formal geometry approach. One of the contributions of 

this paper lies in isolating a particularly weak variant of Cartan's Lemma that 

succeeds to render our ring-theoretic version of GAGA. 

Further development of Harbater's patching method has culminated in (the 

first part of) the proof of Abhyankar's Conjecture given by Raynaud [Ray] and 

Harbater [H4]. (The second part uses other methods from reduction theory.) 

The material in this paper is presented from a slightly different point of view 

in Chapter 11 of the forthcoming book IV]. 

ACKNOWLEDGEMENT: We thank M. Jarden for many stimulating conversations 

and suggestions on the topic of this paper. Fhrther, we acknowledge a helpful 

talk of M. van der Put (Oberflockenbach, February 1994) on the proof of Serre 

and Liu. 

1. Rings of  convergent power series 

The results of this and the next section are well known. The reader may find them 

scattered in [BGR] and [FP]. We reprove them here in order to be self-contained, 

without relying on the whole machinery of rigid analytic geometry. 

Let R be a commutative ring with unity equipped with a non- t r iv ia l  u l t ra -  

me t r i c  abso lu te  value I [. That is, a ~ lal is a m a p  R - -  R satisfying: 

(a) lal _> 0, and lal -- 0 if and only if a = 0; 

(b) there is a E R with 0 < lar < 1; 

(c) labl  = lal" Ibl; and 
(d) la + bJ < max(lal, Ibl). 
By (a) and (c), R is an integral domain. By (c), the absolute value of R extends 
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to an absolute  value on the quotient  field of R (by [~l = ~ ) .  I t  also follows tha t  

I - a[ = [a], and 

(d ' )  I f  [a t < lbl, then  la + b ! = IN. 

Assume,  fur thermore ,  tha t  

(e) R is c o m p l e t e  w i t h  r e s p e c t  t o  I I, i.e., every Cauchy sequence in R 

converges. 

I t  then  follows f rom (d) tha t  a series ~-~--0 an of elements  of R converges if and 

only if an ~ 0. 

R e m a r k 1 . 1 :  I f a  E R a n d  la[ < 1, then 1 - a E  R x. Indeed,  l + a + a  2 + . . .  

converges, say, to b E R. As (1 - a)(1 + a + . . .  + a n) = 1 - a n+l --+ 1, we have 

(1  - a ) b  = 1.  

Example 1.2: (i) Let p be a prime. The  field QB of p-adic numbers  is comple te  

with respect  to the p-adic absolute value. 

(ii) Let / to be a field, and let 0 < e < 1. The  field Ko((t)) of formal  power 

series ~-~~176 ait ~ with coefficients in K0 and N 6 Z is comple te  wi th  respect  to 

the absolute value [ ~ = N  aiti[ = emin(i[ ai#O). 

See L e m m a  1.3 below for addi t ional  examples.  

Let z be a free variable over R. Define 

oo 

R{z} = { E  anZn I an C R, lira an = 0}; 
n - - ~ o o  

R { z ,  z = { an R, l i r a  a n  = Ot .  
Inl--,~ 

n ~ - - o o  

These sets are commuta t ive  rings under  the obvious addi t ion and mult ipl ica-  

tion. Indeed, if ~ ,  a;z ~, ~ j  ajz j E R{z, z - l ) ,  then  ~-~i+j=,, a~bj converges for 

each n E Z, say, to cn 6 R, and cn ~ 0 as i n  --+ oo. Thus  ~-~i al zi " ~ j  bj z j  = 

E n  CnZ n E R { Z , Z - I } .  

View R{z} as a subring of R{z, z- i} .  

Define the n o r m  [f] of f = ~-~nanZ n e R{z ,z  -1} by [fl = max([an[) .  

LEMMA 1.3: 

(i) The norm is an ultrametrJc absolute value on R{z, z- l} ,  extending that 
on R. 

(ii) Both R{z} and R{z, z -1} are complete with respect to the norm.  
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(iii) Each c e R with [c[ = 1 defines an eva lua t ion  h o m o m o r p h i s m  R { z, z -1} 

-~ R given by f = E n  a,~zn ~-* f(c) = E n  arian. 

(iv) Each c E R with Icl < 1 defines an eva lua t ion  h o m o m o r p h i s m  R{z} --+ 

R given by f = ~-~n anzn ~-~ f(c) = E n  an cn" 

(V) For each f e R{z, z -1} there are f+ e R{z} and f -  e R{z -1} such that 

f = f +  q- f -  and I f+ l ,  I f - I  -< {fl" 

Proof: (i) We check that  Ifal -- Ifl . lal  for f ,  a �9 R{z, z - l } .  Let  f = ~ % _ ~  a~z ~ 
and g = ~ = _ ~  b~z ~. We may assume f ~ 0 and g ~ O. Clearly Ifgl <- I l l "  lal. 

Conversely, let n ,m  be the largest indices such that  la~l = Ifl and Ibml = Igl, 
let e = n + m ,  and consider the coefficient ce o f z  e in fg. I f i + j  = ~ and 

(i , j)  ~ (n,m) then i > n or j > m. Hence la~l < Ifl or  Ib~l < Igl, and therefore 

la~l'lbjl < Ifl-lal-  T h u s  naax~+j=e(la~bj) = ta~l ' lbml = I f l ' l a l ,  a n d  this maximum 

is obtained only when (i , j)  = (n,m). Hence Icel -- I~§ = If l"  Igl (by 

(d') above), and so Ifgl >- Ill" Igt. 

Axioms (a), (b), and (d) for an ultrametric absolute value hold trivially. 

(ii) Consider a Cauchy sequence (f,~) in R{z, z-X}. This yields a Cauchy 

sequence in each coefficient, hence (fn) converges coefficientwise to some formal 

sum f = ~ n  a,~z'~. It is easy to show that  actually f �9 R{z, z -1} and If - f ~ l  

0. If fn �9 R{z} for each n, then f �9 R{z}. 

(iii) and (iv) are straightforward. 

(v) If f = ~'~n~=_~ a~z n, let f +  = ~--~n~176 anz n and f -  = ~1=_c~ anzn" | 

Definition 1.4: For f = ~ = o  a~ z~ r 0 in R{z} define the p s e u d o d e g r e e  of f 

to be the integer d -- max(n : la~l = Ifl). Call f regular ,  ifad is invertible in R. 

Remark 1.5: The map z ~-+ z -1 defines a norm-preserving R, automorphism w 

of R ( z , z  -1} of order 2. It maps R{z} onto R(z-1}.  Thus R{z} ~ R{z-1}. 

Furthermore, w maps R[z] onto R[z-1], and R[z, z -1] onto itself. 

THEOREM 1.6 (Weierstrass Division Theorem): Let f �9 R{z} and let g �9 R{z}  

be regular of pseudodegree d. Then there are unique q �9 R{z} and r E R[z] such 

that f = qg + r and deg r < d. Moreover, 

(1) [q[" [g[ <-If[ and It[ ~ If[. 
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Proof: 

PART I: Est imates  (1). Assume tha t  f = qg + r, where d e g r  < d. If q = 0, 

then (1) is clear. Assume tha t  q ~ 0 and let l be the pseudodegree of q. Then  

Iqg] = Iql" Igl equals the value of the coefficient of z d+l in qg; this coefficient is also 

the coefficient of z d+l in f = qg + r, since d e g r  < d + l. Therefore  Iql" Igl -< Ill- 

It follows tha t  Irl = If - qgl <- max(I f l ,  Iqgl) <- Ifl. 

PART II: Uniqueness. Assume tha t  f = qg+r = q~g+r ~, where deg r, deg r ~ < d. 

Then  0 = ( q - q ' ) g + ( r - r ' ) .  By Par t  I, I q - q ' l  = I r - r ' l  = 0. Hence q = q' and 

r = r  t. 

PART III:  Existence i f  g is a polynomial  of  degree d. Write f as ~ = o  bnzn. 

For each m _ 0 let f m =  }-~.n~_-0 bnz n E R[z]. As g is regular of pseudodegree 

d, its leading coefficient is invertible. Euclid's a lgori thm for polynomials  over R 

produces qm, rm E R[z] such tha t  fm = qmg+rm and degrm < degg.  Thus  for all 

k, m we have f m - f k  = ( q m - q k ) g +  (rm--rk)-  By Par t  I, lain--qkl" Ig[, Irm--rkl <-- 

If m-- fk I" Thus {qm } ~ - o  and {rm }m~=0 are Cauchy sequences in R{z},  and hence 

they converge to q C R { z }  and r E R[z]. Clearly f = qg + r and deg r < d. 

r~ d PART IV: Existence for arbitrary g. If g = ~ = o  anz , put  go = ~,~=o a'~zn E 

R[z]. Then  Ig - gol < lgl. By Par t  III with go and f there are qo e R { z }  and 

ro E R[z] such tha t  f = qogo+ro  and degr0 < d. By Par t  I, ]qol < Ill and 

Irol < Ifl- Thus f = q o g + r o + f l ,  where f l  = - q o ( g - g o ) ,  and Ifll < Ig-gol . l f l .  
- - I g l  

Pu t  fo = f .  By induct ion we get, for each k _> 0, elements fk ,  qk E R { z }  and 

rk E R[z] such tha t  deg r < d and 

Ifkl fk  = qkg + rk + fk+l ,  Iqkl <- - ~  Irkl <<- Ifkl, and tfk+ll _< I g -  go_______J~ 
Igl Ifkl. 

o o  
It follows tha t  Ifk[ -~ O, whence also Iqkl, Irkl -~ O. Therefore  q = )-'~k=0qk �9 

o o  
R { z }  and r = ~ k = o  rk �9 R[z]. Clearly f = qg + r and deg r < d. | 

COROLLARY 1.7: Let  f �9 R { z }  be regular o f  pseudodegree d. Then f = qg, 

where q is a unit o f  R { z }  and g �9 R[z] is a monic polynomial  o f  degree d with 

lgl = 1. 

P r o o f  By Theorem 1.6 there are q' �9 R { z }  and r' �9 R[z] of degree < d such 

tha t  z a = q ' f + r '  and Ir'l < Izdl = 1. Pu t  g = z d - r ' .  Then  g is monic of degree 

d, and g = q ' f .  Clearly Ig] = 1. It remains to show tha t  q' �9 R{z} x. 
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Notice that  g is regular of pseudodegree d. By Theorem 1.6 again, there are 

q C R{z}  and r C R[z] such that  f = qg + r and degr  < d. Thus f = qq'f  + r. 

But f = I f  + 0 as well. By the uniqueness in Theorem 1.6, qq~ = 1. ttence 

q' E R{z} x. I 

For the rest of this section let K be a field complete with respect to a non-trivial 

ultrametric absolute value. Every non-zero g E K { z }  is regular. If g E K[z] is 

monic of degree d and Igl = 1, then g is of pseudodegree d. 

COROLLARY 1.8: Let g C K[z] be monic of degree d, irreducible in K[z], and 

JgI = 1. Then g is irreducible in K{z} .  

Proo~ The irreducibility of g in K[z] implies that  d > 0. Therefore g is not 

a unit in K{z},  otherwise the two presentations 1 = gg-1 + 0 and 1 = g0 + 1 

contradict the uniqueness in Theorem 1.6. 

Suppose that  g = gig2, where gl, g2 6 K { z }  are not units. By Corollary 1.7 we 

may assume that  gl is a monic polynomial in z, say, of degree dl, and Igl] = 1. 

Hence gl is of pseudodegree dl. By Euclid's algorithm there are q, r E K[z] such 

that  deg r < dl and g = glq + r. But g = gig2 + 0 as well. The uniqueness 

in Theorem 1.6 gives g2 = q E K[z]. Thus either gl E K[z] x c_C_ g { z }  x or 

g2 E K[z] x C K{z} x, a contradiction. I 

LEMMA 1.9: Let A be either K { z }  or K { z , z - 1 } .  Each f E A can be written as 

f = pu with p E K[z] and u E A x. 

Proof" For A = K { z }  the claim follows from Corollary 1.7 (with R = K).  

Let A = g { z ,  z - l } ,  and let f = ~-~=-oo a~ zn e A. We may assume that  

f ~ 0, and - 1  = min(n : fan[ = [f[) (after multiplying f by a power of z, which 

is a unit of A). 

Set R = g { z } ,  and introduce a new variable w. Consider the ring R{w}  of 
o o  o o  

power series ~-~j=o aJ wj with aj E R and [aj] --* O. Setting ao = ~-~n=o an zn and 

a j  a_ j  for j > 0 we obtain an element ] oo j = = Y~j=o a jw  of R{w}  that  is regular 

of pseudodegree 1. By Corollary 1.7 (with w instead of z) we have ] = 15fi, where 

fi is a unit of R{w}  and/3 = w + ~ for some j3 E R. 

In particular, fi is a unit of A{w}.  We have [z-l[ = 1. The evaluation 

homomorphism 0 : A{w}  --* A given by F ~ F (z  -1) maps fi onto a unit u' 

of A. Thus f = 0(]) = 0(15)0(fi) = (z -1 +/~)u '  = (1 + z ~ ) z - l u  '. Replacing f by 

f '  = 1 + z~ e R = K { z }  reduces us to the case that  f E K{z} .  But this case 

has already been dealt with. I 
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THEOREM i.i0: The rings K{z,z-1}, K{z}, and K{z -~} are principal ideal 
domains. Each ideal is generated by an element of K[z, z- l ] .  

Proof." Let A be either K{z}  or K{z,  z - l} .  By Lemma 1.9, each ideal I of A is 

generated by I '  = INK[z]. This I '  is an ideal of K[z], hence I' = pK[z] for some 

p �9 K[z] (since K[z] is a principal ideal domain). Thus I = pA is a principal 

ideal. 

The case of K{z -I } follows by Remark 1.5. | 

Let QI, Q2, and Q be the fields of fractions of K{z}, K{z-1}, and K{z, z-l}, 
respectively. View QI, Q2 as embedded into Q. 

COROLLARY 1.11: The intersection of Q1 and Q2 inside (~ equals K(z). 

Prooi~ We have K[z] C K{z}  and K[z -1] C_ K{z-1} ,  hence K(z) C_ Q1 N Q2. 

For the converse, let f �9 Q1 N Q2. By Corollary 1.7, f = f l /P l  with f l  �9 K{z}  

and 0 r  �9 g[z]. By Remark 1.5, f = f2/P2 with f2 �9 g { z  -1} and 0 r 

p2 �9 K[z-1]. There are n, m �9 N such that z'~p2 �9 K[z] and z"-mpl �9 K[z-1]. 

Then the element g = (z"p2)fl = zm(zn--mpl)f 2 lies in K{z} ,  and z-rag lies in 

K{z-1} .  Clearly this implies that g �9 g[z] (of degree < m). Thus f = f l /P l  = 
g/(znp2pl) �9 K(z). | 

2. G A G A  

As in section 1, let K be a field complete with respect to a non-trivial ultrametric 

absolute va lue[ [ .  Let R1 = K{z},  R2 = g{ z -1} ,  and R = g { z , z - 1 } .  Let Q1, 

Q2, and Q be their fields of fractions, respectively. View Q1, Q2 as subfields of 

For a matrix A = (aij) �9 M~(R) define the n o r m  IIAII = maxij laijl of A. 

LEMMA 2.1 : 

(i) Every Cauchy sequence in Mn(R) converges. 

(ii) IIA + BII < max(IIAJl , IIBll); 

(iii) IIABII <_ IIAII . IIBII; 

(iv) if]fAil < I, then In - A e GLn(R) = (Mn(R)) x. 

(v) Let 0 < c < 1. Let (Ai) be a sequence of matrices in Mn(R) such that 

[IAi]l <_ c for each i, and IIA~I[ --~ 0. Let Pi = (In - Ax) . . .  (In - Ai), for 

i >_ 1. Then the sequence (Pi) converges to a matr ix in GLn(R).  
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Proof: Assertions (i), (ii), and (iii) follow from the properties of I I. The proof 

of (iv) is a straightforward analogue of Remark 1.1. 

(v) Put P0 = In. By (ii) and (iii) we have [IPi[[ < 1 for each i. Hence 

(2) [IPr - P~-lll = IIP~-l(In - Ai - In)ll ~ IIe~-lll" IIA~II ~ IIA~II ~ o. 

Thus (P~) is a Cauchy sequence, and hence converges so some P E Mn(R). 

Furthermore, by (ii) andby  (2), [IPj-Inl]  = I[ ~7~=I(P~-Pi-1)[[ <- max [IAi[[ < c. 

Hence liP - In[I < 1, and therefore P �9 GLn(R) by (iv). | 

LEMMA 2.2 (Cartan's lemma [FP, III.6.3]): Let  B E Mn(R) such that  

lIB - Inll < 1. Then there are B1 E GLn(R1) and B2 E GLn(R2) such that  

B = B1B2. 

Proos Deduce from Lemma 1.3(v) that for each A E Mn(R) there are A + C R1 

and A-  C R2 such that A = A + + A  - and [IA+[h IIA-II < IIAII. Let A1 = B - I n  

and c = IIAlll. Then 0 _< c < 1. The condition 

In + Aj+I = (In - A+)( In  + Aj)(In - A~-) 

defines recursively a sequence (Aj)~= 1 in R. From 

Aj+I : Af  A;  - A Aj - AjA;  + A AjA; 

it follows that  I[Aj+,[[ < I[AjI[ 2. By induction, I[Aj][ _< c j, and hence Aj  --* O. 

Further, 

(3) In + Aj+I = (In - A+) . . .  (In - A +) B (In - A T ) ' "  (In -- A~-). 

We have IIA~II < IIAjll < c < 1 and IIA~-II --~ 0. Hence by the Lemma 2.1(v), 

the partial products (In - A~-)... (In - AT) converge to some B~ E GLn(R2). 

Similarly, the products (In - A+) ' ' '  (In -- A +) converge to some B~ e GLn(R1). 

Passing to the limit in (3) we get In = B~BB~.  Hence B = (B~)-I(B~) -1. 1 

COROLLARY 2.3: Let  B E GLn(R). Then there are B1 E GLn(R N Q1) and 

B2 E GLn(RN Q2) such that  B = B1B2. 

Proof'. As K [ z , z  -1] is dense in R, there is A e M n ( g [ z , z - 1 ] )  such that  

l I B - l - A l l  < I-]-~'1 Then [ [ B A - / n i l  = l IB(A-  B-1)II _< [IBl[ �9 I [A-  B-1ll < 1. 
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By Lemma 2.1(v), B A  c GL~(R). In particular, A E GL~(R) is a regu- 

lar matrix over K(z),  whence A 6 GL~(Q2). By Cartan's lemma there are 

B1 E GL~(R1) and B~ e GL~(R2) such that B A  = B1B~. Thus B = B1B2, 

where B1 E GL~(R1) C_ GL~(R n Q1) and B2 = B~A -1 6 GL~(R) N GL,~(Q2). 

I 

3. Patching 

Fix a field Q and a finite group G. Let Indl G Q = {~-~geC aggl ag 6 Q} be the 

free Q-module with basis G. Then G acts on Indl G Q from the left by a(ag) = 

a(c~g). ~klrn Indl G Q into a commutative (~-algebra by ~-~geG agg'~-~g6G bgg = 

~geG agbgg" (Thus, as a ring, Illdl G (~ is the direct product of ]G I copies of Q.) 

The G-action on Indl G Q preserves this multiplication. The unity of Indl G Q is 

~-~-96G lg, and (~ (and every subfield of Q) embeds into Ind~ (~ via a H ~-~geG ag. 

For a Galois extension P / Q  contained in (~ such that its Galois group H is a 

subgroup of G we define 

(4) 
IndGH P = {~-~, agg E Ind~ Q,[ a 9 c P, ag~ -- -r-l(ag) for all g C G, T E H}. 

g6G 

If ~t is a system of representatives of G/H,  then 

(4') 

Ind/~P = { ~ - ~ a g g 6 I n d ~ Q [ a ~ 6 P ,  ao~ = T-l(a~)  for al lw 6 ~, T E H } .  
g6G 

LEMMA 3.1: Ind~ P is a subring ofIndl  G Q. Moreover, 

(a) IndGH P is G-invariant. 

(b) (Ind~ p ) a  = Q. 

(c) IndGH P is isomorphic over Q to the direct product of (G : H)  copies o[ P. 

(d) dimQ IndGH P = IGI = dim~ Indl G (~. 

Proof: (a) Let a = E96G agg 6 IndGH P and a 6 G. Then a = EgeG ao - lga - lg  

and a o - ~  = T- l (ao- lg)  for all g 6 G and T E H. As a(a)  = ~-~geG ag(ag) = 

~ g e C  ao-~gg, the last condition implies a (a)  6 IndGH P.  

(b) The group G fixes a = ~ 9 e e  agg 6 Ind~ P if and only if aug = a s for all 
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a, g E G, that is, ag = al for all g r G. Thus 

(indOH p)C = { E  agl a e P, a = r- l(a)  for all ~- �9 H} 
gEG 

- - - { E a g l a c Q } = O .  
gEG 

(c) Let ~ be a system of representatives of G/H. It follows from (4') that  

~ g e a  agg ~ ~ e a  a~w is a Q-isomorphism I n d , / P  ~ pC. 

(d) The assertion follows from (c). | 

Remark 3.2: A basis ofIndaH P over Q. Let/3 be a primitive element for P/Q, 

and let ~ = {Wl,... ,Wm} be a system of representatives of G/H. Let T1,. . . ,  71 

be an enumeration of the elements of H. The following sequence of IGI elements 

of I n d , / P  
l 

C ~--- (ETi-l(~j--1)(OJkTi)l 1 < k < m, 1 < j  < l) 
i= l  

(say, with the lexicographical order) is a basis of Ind~ (~ over (~. 

Indeed, let S = (lg I g e G) be the standard basis of Ind~ Q over Q, and let 

B E Mn ((~) be the transition matrix from S to C, that is, the matrix defined by 

C = SB. Of course, B depends on the order of the sequence S, but only up to 

the order of its columns, which will not be important in the sequel. For instance, 

write S as (l(WkVl)l 1 < k < m, 1 < i < l) (with the lexicographical order). Then 

B consists of m identical diagonal blocks B0 = (T(I(~J-X)) e Ml((~). These are 

Vandermonde matrices, and hence 

det B0 = H [r(~) - ~-'(~)] -- =t= discrQ/3 ~ 0. 
v,rtEH 
v~.r ! 

Thus B e GL (Q), and therefore C is a basis of Ind? Q over O. 
By Lemma 3.1(d), C is also basis of Ind/~ P over Q. 

Moreover, let R be a subring of (~ that contains all conjugates T(fl) of/3 over 

Q and such that discrQ/3 is invertible in R. Then the entries of the transition 

matrix B lie in R, and det B e R • . Hence B E GLn(R). 

Definition 3.3: Let I be a set of indices, III _> 2. 

P a t c h i n g  d a t a  s = (E, Fi, Qi, (~; Gi, G)iel consist of fields E C_ Fi, Q~ _c 

and finite groups Gi _< G, for each i E I, such that 
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(i) Fi/E is a Galois extension with group Gi, for every i E I; 

(iX) Fi C Njr Qj, for every i E I; 

(iii) Niel  Qi = E; and 

(iv) the subgroups Gi generate G. 

For each i C I put P~ = FiQi, the compositum of Fi and Qi in (~. Conditions 

(iX) and (iii) imply that  FinQi = E. Hence Pi/Q~ is a Galois extension with group 

isomorphic (via the restriction of automorphisrns) to Gi = G(Fi/E). Identify 

G(PjQ~) with G~ via this isomorphism. 

Let N = Ind~ (~ and Ni = I n d ' ,  P~ C_ N, for each i E I. Let F = ~ i  Ni. Call 

~ = ( E, Fi, Q~, 0,; Gi, G; P~, N, N~, F)i~1 the full p a t c h i n g  d a t a  associated 

with s 

Fix, for the rest of this section, a full patching data 

s = (E, F~, Qi, (~; G~, G; Pi, N, Ni, F)~eI. 

PROPOSITION 3.4: Assume that: 

(COM) There is a linear basis of N over (~ contained in each N~. 

Then 

(a) F is a Galois tield extension of E with group G (via restriction from N); 
(b) for each i there is a linear basis of F over E that is a basis of N~ over Qi. 

Ni 

/ 
Q~ 

F 

/ 
, F I 

E F 

/ 
N 

Qj 

Definition (4) gives an explicit Proof: By Lemma 3.1, F is an E-algebra. 

presentation of F as 

F =  l~aageInd~(~]ager~Pi'l, aea iel agr=7-1(ag) f ~  • e U G i }  
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(b) Let C -- (oQ, . . . ,  O~n) be the basis mentioned in (COM). Then a l  . . . .  , an E 

F. By Lemma 3.1(b), Ni is a Qi-algebra, and by Lemma 3.1(d), dimQ, Ni = 

dimQ N = #C. Therefore C is a basis of Ni over Qi. Moreover, C is a basis of F 

over E. Indeed~ every b C N can be uniquely written as b = a la l  + . . .  + a~a~ 

with a l , . . . , a m  E Q. Then b C N~ if and only if al . . . . .  a~ C Qi. Hence b C F if 

and only if a l , . . . , a n  C NiQi  = E. 

(a) We first show that F is a field. Let a = ~ g e C  agg E F. Assume that a ~ 0. 

Then the set X = {g E G[ ag ~ 0} is not empty. By (5), X = X(U ie  I Gi). Hence 

X = X ( G i l i  E I) = X G =  G. Let a ' =  ~ g e c a ~ l g .  By (5), a '  E F. Clearly 

ca '  = 1. Thus a is invertible in F,  which proves that F is a field. 

By Lemma 3.1(a), the Ni are G-invariant, and hence so is F. By Lemma 

3.1(5), F G = N ~N~  = N~Q~ = E. By (b), I F :  E] = [GI, and hence G a c t s  

faithfully on F. By Galois theory G ( F / E )  = G. | 

Condition (COM) is crucial for Proposition 3.4. We will achieve it only in a 

very special situation. 

It will be convenient to identify the field F constructed in Proposition 3.4 with 

a subfield of Q: 

Definition 3.5: Consider the homomorphism of Q-algebras 7r: Ind~ Q ~ (~ given 

by ~ g e a  agg ~-~ al. Then :tie is an isomorphism. We call ~r(F) the c o m p o u n d  

of s 

We now list some properties of the patching. 

LEMM* 3.6: Assume that $' satisfies (COM), and let F'  be its compound. Then 

(a) F ' / E  is a Galois extension with group G. 

(b) Pi = F'Q~, and the restriction G( P~/ QI) --~ G( F ' /  E) is the given inclusion 

G~ --~ G, for each i E I.  

(c) Let L / E  be a finite Galois extension, and let p: G --+ G ( L / E )  be an epi- 

morphism. Assume that L C ~ i e l  P~ and that resp~/LTi = p(Ti), for every 

~-~ e Gi < G and each i. Then L C F'  and resF,/La = p(e) for each a E G. 

(d) Let I = {1,2}. I f  G is the semidirect product GI>~G2, then F2 --- (F') G~ 

and resF,/F2 is the projection p: G --~ G2 (that is the identity on G~ and 

G1 = ker p). 

(e) Fix i C I. Let v be a discrete valuation of E.  Assume that it extends to a 

valuation v~ of Qi such that the extension Q J E  is immediate. Then 

(i) v ramifies in F'  i f  and only it ramifies in Fi; 
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(ii) a decomposition (resp. inertia) group of v in F ~ is contained in G~. 

Proof: Let N = Ind  a (~, and for each i C I let P~ = F~Q~ and Ni = I n d a  Pi C_ 

N. Let F = Ni Ni, and let 7r: Ind l  a (~ ---+ (~ be  the project ion ~~gca egg ~ el. 

(a) This  follows f rom Propos i t ion  3.4(a). The  restr ict ion f rom N to F 

is an i somorphism G ---+ G(F/E) .  The  i somorphism 7r: F --+ F ~ induces the 

i somorphism G(F/E)  ~ G(F ' /E )  by a ~ 7r o a o 7r -1.  Thus  G acts on F' by 

(6) a(Tr(a)) = 7r(a(c~)), a E G, a e F. 

(b) By (5), F' C_ Pi. Let r �9 Gi = G(Pi/Qi),  and a = ~]~geaagg �9 F. 

Then  T(Tr(o~)) = T(al) = a,-1 = 7r(~-]~gea a~-igg) = ~-(T(o~)). By  (6), resF, ' r  = T. 

In par t icular ,  G(Pi/Qi) ~ G(F ' /E)  is injective, and hence Pi = F'Qi. 

(c) Define an embedding  A: L ~ g by A(a) = )-']~gea P(g-1)(a)g" Clearly 

lr o A = idL. If g �9 G and ~- �9 Gi, then  

p ( ( g ~ ) - l ) ( a )  = p ( 7 - 1 ) ( p ( g - 1 ) ( a ) )  = ~ - l ( p ( g - ~ ) ( a ) ) .  

By (4), A(L) C_ N~ for each i, and hence 1(L)  C_ F .  Thus  L = 7r(,k(L)) C_ 7r(F) = 

F /" 

Ident i fy G(F/E)  with G via restr ict ion to F .  If  a �9 G and a �9 L, then  

a(A(a)) = E P(g-1)(a) (ag) = E P((ag)-l)(p(a)(a)) (ag) = A(p(a)(a)). 
gEG gCG 

Hence, by (6), a (a)  = a ( ~ ( ~ ( ( a ) ) )  = ~ ( a ( a ( ( a ) ) )  = ~ ( a ( p ( a ) ( a ) ) )  = p(a) (a) .  

(d) Let  L = F2. If  ~-1 �9 G1 = G(P1/Q1), then  p(T1) = 1, and resp~/n('O) = 

1, since L = F2 C Q1- If  T2 �9 G2 = G(P2/Q2), then  p(~-2) = T2, andresp2/L(T~) = 

T2, by our identifications. Hence the assert ion follows f rom (c). 

(e) All the informat ion  comes f rom completions:  Ex tend  vi to Pi and let 

-f)i/O,i be the comple t ion  of Pi/Qi ( tha t  i s , / 5  be the comple t ion  of Pi, and (~i be 

the closure of Q~ i n / 5 ) .  Let  ~3~ be the extension of v~ t o / 5 .  Then  the  restr ict ion 

G(Pi/Q.i) --* G ( P j Q i )  maps  G(Pi/d2~) onto a decomposi t ion  group of vi in Pi, 

and the inert ia  group of ~)i onto an inert ia group of vi in Pi. 

As Q i / E  is immedia te ,  and, by (b), Pi = F'Qi, we get tha t  /5 / (~i  is the 

complet ion of F~/E. Thus  a decomposi t ion  (resp. inertia) group of v in F ~ 

is contained in the image Gi of the restr ict ion m a p  G(Pi/Qi) ~ G(F/E) .  In  

part icular ,  v ramifies in F ~ if and only if vi ramifies in P~. 

Similarly, since Pi = FiQ~, we get tha t  v ramifies in Fi if and only if vi 

ramifies in P~. Thus  v ramifies in F~ if and only if v ramifies in F ~. | 
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4. R e a l i z a t i o n  o f  groups  

Let K be a complete field with respect to a non-trivial ultrametric absolute 

value and let z be transcendental over K.  Let R1 = R~ = K{z},  let R2 = R~ = 

K{z  -1} and R = K{z, z-l}. Let Q1, Q2, Q be the quotient fields of R1, R2, R, 

respectively, and let E = K(z). Then E C_ Q1, Q2 c_ ~). By Corollary 1.11 we 

have Q1 N Q2 = E. Also denote R~o -- K[z -1] and R~o = K[z]. Let Q~ = Q2 

and Q~ = Q1. 

LEMMA 4.1: With E, Q1,Q2,Q as above, let 

(7) (E, Fi, Qi, Q; ai, a)i----1,2 

be a patching data. Assume that Fi = E031 ), where ~3i and all its conjugates 

over E are in Q~ N R, and discrE ~3~ E R • , for i = 1, 2. Then 

(a) condition (COM) of Proposition 3.4 holds; 

(b) the compound F' of (7) has an unramified K-rational place. 

Proof: Recall (Definition 3.3) that  (7) being a patching data  means that  G is a 

finite group generated by the subgroups G1, G2, we have F1 C_ Q2 and F2 C_ Q1, 

and F j E  is a Galois extension with group Gi, for i -- 1, 2. 

(a) Let 1 < i < 2. By Remark 3.2 there is a basis Ci of Ni = Inda  a, FiQi over 

Qi that  is also a basis of N -- Ind~ (~ over Q such that  the transition matr ix  Bi 

from the standard basis of N to Ci is in GLn(R). Therefore the transition matr ix  

B11B2 from C1 to C2 is in GLn(R). By Corollary 2.3 there are A1 E GLn(Q1) 

and A2 E GLn(Q2) such that  B~IB2 = A1A2. Put  C = CIA1 = C2A21. Then C 

is a basis of N over (~ contained in both N1 and N2. This gives (COM). 

(b) Recall that  F' C_ ~2. Each a E K with lal = 1 induces the evaluation 

homomorphism z ~ a from R to K.  As R is a principal ideal domain (Theorem 

1.10), this homomorphism extends to a K-place (~ -~ K O {co}. Its restriction 

Ca to F ~ is a K-place. There are infinitely many a C K with lal = 1. For all but 

finitely many of them Ca is unramified over E. | 

Let F / E  be a finite Galois extension with group G, and let zr: F ~ F ~ be 

an isomorphism of fields that  maps E onto itself. Then Ir induces an isomorphism 

G(F/E) ~ G(F'/E),  and hence G(F/E) = G, where G acts on F '  via (6). 

In the next lemma consider both  K((z)) and R as submodules of the K-  

module of formal double sided power series Y'~i~-oo ai zl with coefficients in K.  
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For c ~ 0 in K let #c be the automorphism of the field K((z) )  mapping f ( z )  -= 

~i~=N a~z i to f (cz)  = ~ = N ( a i c i ) z  i. Note that  #c leaves E = g ( z )  invariant. 

LEMMA 4.2: Let F / E  be a /inite Galois extension such that F / K  has an 

unrami~ed prime divisor 7 ~ of degree 1. 

(a) There is a K-automorphism 8 o r e  that extends to a K-embedding of fields 

8: F --~ K((z)) .  

(b) Assume that F C_ K((z)) .  Let ~ be a primitive element for F / E .  Then 

there is r > 0 with the following property: I f  c E K • and Ic] < r, then 

#c(~) and all its conjugates over E are in Q1 n R and discrE #~(~) E R • . 

Proof." (a) Let p be the prime of E / K  below 7'. Let F be the completion of F at 

:P, and let /~ C_ F be the completion of E at p. Then IF : /~ ]  = e ( F / E )  f ( F / E )  = 

1. Apply an automorphism of E / K  to assume that  p is z ~ 0. Then F, = K((z)) .  

Hence F C_ _~ = g( ( z ) ) .  

(b) Let ~1 , . . . ,~ ,~  be the conjugates of ~ over E. For i ~ j set Aij = 

( ~ / _  ~ j ) - I  E F. All ~i and all Aij lie in K((z) )  and are algebraic over E. By 

a theorem of Artin JAr, Theorem 2.14] there is Co C K • such that  the ~i and 

the Aij converge at z = co. Let c E K • such that  Ic] < ]e01. Then the ~/ and 

the A/j converge at z = c. It  follows that  we may consider the convergent series 

]-tc(~i), pc(A/j) as elements of Q1 M R (such that  the coefficient of z -~  is 0 for 

sufficiently large n). As # ~ ( ~ / -  ~j)#~(A~j) = 1, we have #~(~)  - #~(~j) E R x. 

Hence discrE #~(~) E R x. I 

PROPOSITION 4.3: Let G be a t~nite group generated by subgroups G1 and G2. 

For i = 1,2 let F~ be a Galois extension o r E  = K(z )  with group G~ such that 

F~/K is a regular extension that has an unrami//ed prime of degree 1. Then 

there exists a Ga10is extension F of E with group G such that  F /  K is a regular 

extension that has an unramified prime of degree 1. 

Moreover, if  G is the semidirect product G1 >~G2, then we may  choose F 

so that F2 C_ F and the restriction map G ( F / E )  -+ G(F2/E)  is the canonical 

projection p: G ~ G2. 

Proof'. We may replace F2 by F~ = 82(F2), where 82:F2 --~ F~ is an isomor- 

phism of fields that  restricts to an automorphism of E. Indeed, 82 induces an 

isomorphism G(F2/E)  --* G(F~/E),  and hence G(F~/E)  = G2. Suppose that  

G = G1 >~G2 and that  F~/E is a Galois extension with group G so that  F~ C_ F ~ 

and the restriction map G ( F ' / E )  --+ G(F~/E)  is p. Extend 82 to an isomorphism 
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of fields 0: F --* F t. Then 0 induces an isomorphism G(F/E)  -* G(F' /E) ,  and 

hence G(F/E)  = G, and the restriction map G(F/E)  --* G(F2/E) is p. 

Apply Lemma 4.2 to replace F2/E by an isomorphic extension so that  F2 = 

E(/32), where/32 and all its conjugates over E are in Q1 ;7 R and discrE/32 E R x . 

By the same argument and by Remark 1.5 we may assume that  Fa = E(/31), 

where /31 and all its conjugates over E are in Q2 0 R and discrE/31 C R x. By 

Lemma 4.1(a) the patching data (7) satisfies (COM) and its compound has an 

unramified K-rat ional  place. The first assertion follows by Lemma 3.6(a). The 

second assertion follows by Lemma 3.6(d). | 

Recall that  a local integral domain R with a maximal ideal m is complete 

if n = li+__m R/m n. 
n 

THEOREM 4.4 (Harbater):  Let K be the quotient field of a complete local 

integral domain, properly contained in K. Let G be a finite group. Then there 

is a Galois extension F / K ( z )  such that G(F/K(z ) )  ~- G and F / K  is a regular 

extension that has an unramified prime of degree 1. 

Proos By [Ja, Corollary 1.6] we may assume that  K is a complete field with 

respect to a non-trivial ultrametric absolute value. Apply inductively Proposition 

4.3. Thus it suffices to assume that  G is abelian (or even a cyclic p-group). Such a 

construction is well known (see [F J, Lemma 24.46] or [V, Section 10.4.2]), except 

perhaps for the existence of an unramified prime of degree 1. But this follows 

from the next lemma: 1 

LEMMA 4.5: Let K be an infinite field, and let F / K ( z )  be a Galois extension 

with abelian group G, such that F / K  is regular. Then there exists a Galois 

extension F ' /K ( z )  with group G, regular over K such that  F ' / K  is regular and 

has an unramified K-rational prime (i.e., a prime of degree 1). 

Proof'. Let E = K(z).  Only finitely many primes of F / K  are ramified over E.  

Therefore there is a prime p of E l K  with residue field K and a prime :P of F / K  

above p that  is unramified over E. Let L be the residue field of P.  Then L / K  is 

a finite Galois extension. As F / K  is regular, F and L are linearly disjoint over 

K.  Therefore F L / E  is a Galois extension, and G(FL/E)  -~ G(F/E)  • G(L/K) .  

Let q be a prime of F L / L  above P.  As F L / L  is a constant field extension of 

F/K ,  the prime q is unramified over F,  and hence also over E,  and its residue 

field is L. 
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Let A be the decomposition group of q over E,  let F '  = (FL) ~ be the 

decomposition field, and let P '  be the prime of F '  below q. Then the residue 

field of P '  is K.  The algebraic closure of K in F '  is contained in the residue field, 

and hence it is K.  Furthermore, F' /K  is separable, since F L / K  is. Hence F' /K  

is regular. 

It  remains to show that  A is normal in G(FL/E) and G(FL/E) /A  ~ G. 

This will follow if we show that  G(FL/E) = G(FL/EL) • A. 

The restriction 7r: G(FL/E) --~ G(EL/E) maps A onto the decomposition 

group of q a EL over E. As EL/L  is a constant field extension of E/K ,  this 

decomposition group is G(EL/E). Therefore A �9 G(FL/EL) = A �9 Ker(Tr) = 

G(FL/E). As the inertia group of q over E is trivial, there is an isomorphism 

A --* G(L/K), and hence [A I = [EL: E]. It follows that  7rl/, is an isomorphism, 

and therefore A N G(FL/EL) = A N Ker(Tr) = 1. Finally, as G(FL/E) = 

G(FL/EL) • G(FL/F), and G(FL/EL) ~- G is abelian, G(FL/EL) lies in the 

center of G(FL/E). Hence G(FL/EL) commutes with A. | 

THEOREM 4.6: Let Ko be an algebraically closed field. Then every finite 

embedding problem over Ko(Z) is solvable. 

Proof'. By Tsen's  theorem [Ri, Proposition V.5.2], Ko(z) has cohomological 

dimension 1. Hence the absolute Galois group of Ko(z) is projective IF J, Remark 

on p. 293]. By Jarden's  lemma [Ma, p. 231] it suffices to show that  all split 

embedding problems over Ko(z) are solvable. So consider the split embedding 

problem given by a finite Galois extension Lo/Ko(z) and a split surjection p: G --~ 

G(Lo/Ko(z)). As K0 is algebraically closed, each (unramified) prime of Lo/Ko 
is of degree 1. 

PART I: Solution over a complete field. Let t be transcendental over L0, and 

let K = Ko((t)). By Example 1.2, K is complete with respect to a non-trivial 

ultrametric absolute value. Consider L0 and E = K(z) as subfields of Lo((t)). 

Then L0 n K(z) = Ko(z). Thus L = LoK is a Galois extension of E,  and the 

restriction G(L/E) --* G(Lo/Ko(z)) is an isomorphism. Each unramified prime 

of Lo/Ko extends to an unramified prime of L / K  of degree 1. 

By Theorem 4.4 there is a Galois extension F1 of E with group Kerp such 

that  F1/K is a regular extension that  has an unramified prime of degree 1. By 

Proposition 4.3 there is a Galois extension F of E that  contains L and such that  

G(F/E) ~- G and the surjection G(F/E) --* G(L/E) is p. Moreover, F / K  is 
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regular. Let a be a primitive element for F/E,  integral over K[z]. Let f C 

K[Z, Y] such that  f (z ,  Y) is the monic irreducible polynomial of a over E. Then 

F is the quotient field of K[Z, Y]/ f ;  as F / K  is regular, f is absolutely irreducible. 

PART II: Construction ofa Galois cover. There is a finite sequence x of elements 

of K such that F' = Ko(x, z, a) is a Galois extension of E' = Ko(x, z) with Galois 

group isomorphic to G(F/K(z))  via the restriction to F ' .  We may assume that  x 

contains all coefficients of f .  By Bertini-Noether theorem IF J, Proposition 8.8] we 

may add to x the inverse c -1 of a suitable c E Ko[x] and thus assume that  r  

is irreducible over K0 for every homomorphism r Ko[x] --* Ko. Furthermore 

[F J, Lemma 17.28] there is a polynomial g(X, Z) = go(X)Z m + - . .  + gin(X) over 

Ko such that go(x) ~ 0, the ring A = Ko(z)[x, g(x, z) -1] is integrally closed, and 

B = A[a] is a Galois ring cover [F J, p. 57] of A with primitive element a. 

PART III: Specialization. By Hilbert's Nullstellensatz there is a sequence a of 

elements of K0 such that g0(a) ~ 0 and x --* a is a specialization over K0. 

Extend x --~ a to a Ko(z)-homomorphism r A --* Ko(z) by z H z, and then to a 

homomorphism r from B into the algebraic closure Lo of L0. Composing r with 

an automorphism of Lo/Ko(z), we may assume that r is the identity on L0. 

Let Fo = Ko(z, r  be the residue field of r As r  is irreducible, 

r  is the monic irreducible polynomial of r  over go(z). Hence 

[Fo : Ko(z)] = d e g v r  = d e g y f  = [G[. By [FJ, Lemma 5.5], r induces 

a group isomorphism G(F'/E')  --* G(Fo/Ko(z)) that  extends the restriction 

G(LoE~/E ') ~ G(Lo/Ko(z)). Thus Fo is a solution to the embedding problem. 

| 

COROLLARY 4.7: Let K0 be a countable algebraically closed field, and let L be 

a function field of one variable over Ko. Then the absolute Galois group of L is 

the free profinite group flu on countably many generators. 

Proo~ By assumption, L is a finite separable extension of Ko(z). By Theorem 

4.6 and by Iwasawa's criterion [FJ, Corollary 24.2], G(Ko(z)) ~- F~. As G(L) is 

an open subgroup of G(Ko(z)), also G(L) ~ ~"~ [F J, Proposition 24.7]. | 
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